

I f we do not find anything very pleasant, at least we shall find something new Voltaire

Things should be described as simply as possible, but no simpler

A. Einstein

PREFACE

The electric relay is one of the most frequently used devices in modern technological systems. It can be found in cars, washing machines, microwave ovens and medical equipment, as well as in tanks, aircraft and ships. Practically no industry would function without relays. In some complex automatic control systems in industry, the number of relays is estimated in the hundreds and even thousands. In the power-generation industry, no power device is allowed to operate without special protection relays. Certain electrical equipment, such as power transformers, may be protected by several different kinds of relays, each controlling different functions.

Because relays are so widely used and there are so many types, the broad population of engineers is unfamiliar with most of them. Generally speaking, engineers in a specific technical field are usually only familiar with relays that are applicable for specific devices. The same is true of specialists involved in the design and production of relays. Therefore, obtaining information on relays is a problem both for students whose future profession involves relay application, and for teachers in technical colleges or extension courses, who need up-to-date information about relays for their students.

Where can we find extensive publications that equally meet the needs of engineers, teachers and students?

Various publications and books about relays currently on the market can be divided into two groups. One is generally called "Low Power Relays" or "Power Relays" (both terms mean the same thing, i.e. a low power electromagnetic relay with a switching current not exceeding 30 A). The second group is "Protective Relaying" (protective relays for protection of power networks), where the emphasis is placed not on a description of the principles and construction of relays, but on schematic principles of protection of electrical networks and calculation of their operating modes.

On the one hand dividing the entire "world of electric relays" into two groups excludes some important relay implementations, for example relays with a switching current of hundreds of amperes, high-voltage relays, mercury relays, reed switch relays, solid-state relays, electric thermal relays, time-delay relays, safety relays and many others. On the other hand such an artificial division within the same field frequently results in separate treatment of common questions regarding relays which may be of different kinds, but are actually related and should be dealt with together and not separately. Experience accumulated for one type of relay is not always taken into account regarding other types of relays, even if the analogy is obvious. Moreover, modern protection relays usually contain electromagnetic, reed switch or solid-state relays as output elements, and experts in relay protection must be aware of their idiosyncrasies. In addition, in many particularly powerful and high-voltage modern electronic systems (power supplies, powerful lasers, radars, etc.) experts face challenges of providing protection against emergency states (overload, overcurrent, etc.), similar to challenges encountered by specialists in relay protection.

Another disadvantage of current publications is that they rarely meet the full range of engineering requirements. Some are intended mainly for experts and are abundant in equations and calculations for relays; others emphasize standards, methods of quality control and other issues concerning production of relays; and still others for engineers and technicians who are not experts in relays but only use relays in their equipment. Most of these publications provide the information in such a simplified and limited way that they are of little practical benefit, as they do not give simple and understandable answers to many questions concerning the implementation of relays, such as the following:

- Is it possible to switch on an electric light bulb having a nominal current of 0,3A with the assistance of a reed switch relay with a nominal switching current of 1A? (The correct answer is NO!)
- Why does a relay, which has worked well for a year, begin to drone and to malfunction? (The reason is that the relay has been incorrectly installed with respect to the vertical line.)
- Why does the ground fault relay ("residual current device") malfunction? Does it mean that the relay is out of order? (Not necessarily. Most often the reason is changes in insulation resistance of the equipment under exposure to moisture or high temperature.)

To answer these questions, it is essential to have a clear understanding of how relays function. That brings us to the question of what is necessary for effective study of the basic principles of relays of certain types? Is it enough just to analyze the specific construction of a certain relay? The author is convinced that it is not. The reason is that when a relay of a similar type but with a different construction is next encountered, the learning process must begin all over again.

For each type of relay, this book includes descriptions of several types of relay constructions, each functioning on a different basis. Moreover, you will find full coverage here of the historical development of relay construction – from the earliest to modern times. The author is convinced that only such an approach can ensure understanding of principles applicable of all types of relays.

The author aimed to write a comprehensive book about relays without the disadvantages of other books and publications listed above. This book covers the diversity of the "world of electric relays" and reveals the dynamics of their development – from the earliest ideas to modern constructions and applications. In order to make the book understandable, not only for experts but also for laymen, the author utilizes the "picture-instead-of-formula" principle. Such an approach enables engineers, technicians, teachers and students who are interested in relay construction to use the book as an encyclopedia of electric relays.

Furthermore, general readers who are interested in the history of engineering will discover many interesting historical facts about the invention of relays. Inquisitive readers will be able to enrich their knowledge in the field of electronics by reading the chapters devoted to electronic relays.

It is for you to decide whether the author succeeded in attaining his objective.

This book consists of 16 chapters. The first four chapters cover the basic principles of relay construction and its major functional parts, such as contact systems, magnetic systems, etc. The following 12 chapters are devoted to various specific types of relays. Each of these chapters includes a description of the principles of relay functioning and construction as well as features of several different relays belonging to a certain type, but operating on different principles and developed at different times.

The information in the book is arranged such that the reader can work with any specific part without the having to refer to another part of the book. It is also structured to function as an encyclopedia of relays by facilitating consultation when the need arises. It helps the reader find answers to particular questions, and avoids the pitfall of forcing the reader to read the whole book even though certain parts may be of only marginal interest.

The author will be grateful for any suggestions and remarks aimed towards improvement of the book. Please send your comments to Publisher.

Vladimir Gurevich, Ph. D.

Contents

Series Introduction	iii
Acknowledgements	v
Preface	xi
1 History	1
1.1. Relays and Horses	1
1.2. From Oersted to Henry	2
1.3. Art Professor Samuel Morse	11
1.4. Edison's Relay	17
1.5. The First Industrial Relays	19
2 Magnetic Systems of Electromagnetic Neutral Relays	27
2.1. Basic Components of Electromagnetic Relays	27
2.2. Hysteresis and Coercitive Force	29
2.3. Types of Magnetic Systems	30
2.3.1 The Clapper-Type (Attracted-Armature) Magnetic	
System	30
2.3.2. Systems with a Balanced Armature	33
2.3.3. Direct Motion (Solenoid-type) Systems and Their	
Peculiarities	41
2.4. Differences Between AC and DC Relays	44
2.5. Some Auxiliary Elements for Improving the Relay Operation	48
2.6. What Happens When a Relay is Energized	51
2.7. Windings of Relays: Types and Design Features	55
3 Contact Systems	63
	63
3.1. Designs of Basic types of Contacts	63 67
3.2. Silver, Gold, Platinum	67 68
3.3. Contacts with Two-Stage Commutation	69
3.4. What is the Purpose of "Contact Pressure"	
3.5. Self-Cleaning Contacts	71
3.6. Self-Adjusting Contacts	74
3.7. When Power Does Not Equal Multiplication by Current and	
Voltage	76
3.8. Split Make-Before-Break High-Frequency Contacts	81
3.9. Compensation for Shocks and Electro-Dynamic Forces in	~ -
Contacts	85
3.10. Sparking Contacts and Their Control	91

3.11. High-Power Contact Systems
3.12. Mercury Displacement Relays
4 External Design of Relays
4.1. Environmental Impact on Relays
4.2. Wood and Cardboard: First Protection Shield for Relays
4.3. Is a Sealed Relay Always Better Than Open One?
4.4. Outlets, Terminal Sockets and "Containers" for Relays
4.5. Indicators of Operation and Test Buttons
4.6. Relays Which Do Not Look Like Relays at All
·····
5 Reed Switches and Reed Switch Relays
5.1. Who invented the "Reed Switch"?
5.2. Coruscation of Ideas and Constructions
5.3. High Power Reed Switches
5.4. Membrane Reed Switches
5.5. Mercury Reed Switches
5.6. High-Voltage Reed Switches
5.7. Reed Switches with Liquid Filling
5.8. Polarized and Memory Reed Switches
5.9. Reed Switch Relays
5.10. Mercury Reed Switch Relays
5.11. Winding-Free Relays
6 High-Voltage Relays
6.1. What is a "High-Voltage Relay"?
6.2. Open Relays for High-Voltage Switching
6.4. High Power Vacuum Relays and Contactors
6.5. High-Voltage Reed Relays
6.6. High-Voltage Interface Relays
7 Electronic Delmus
7 <i>Electronic Relays</i>7.1.Was it Thomas A. Edison Who Invented a Vacuum Light
Lamp?
7.2. Lee De Forest Radio Valve: From its First Appearance Until
Today
7.3. How a Vacuum Tube Works
7.4. Relays with Vacuum Valves
7.5. Gas-Tubes with Relay Characteristics
7.6. Power Mercury Valves
7.7. Electron-Beam Switching Tubes
7.8. Semiconductor Relays
7.8.1. First Experiments and Early Semiconductor Devices
7.8.2. Semiconducting Materials and <i>p</i> - <i>n</i> -Junctions
7.8.3. Diode Switch of Electric Circuits
7.8.4. The Transistor: a Piece of Silicon With Three Wires That
Has Changed the World
7.8.5. Bipolar Unijunction Field

7.8.6. From Micromodules to Microchips	292
7.8.7. Transistor Devices with Relay Characteristics	297
7.8.8. Thyristors	307
7.8.8.1. Control of Thyristors on Direct Current	316
7.8.8.2. Control of Thyristors on Alternating Current	319
7.8.8.3. Diac, Triac, Quadrac	321
7.9. Optoelectronic Relays	328
7.10. Super-Power Electronic Relays	334
7.10. Super-rower Electionic Kerays	337
7.11. Hydrid Keldys	557
8 Time Relays	344
8.1. Electromagnetic Time-Delay Relays	344
8.1. Capacitor Time-Delay Relays	349
8.3. Relays with Clockwork	350
8.4. Pneumatic and Hydraulic Time-Delay Relays	358
8.5. Electronic Time-Delay Relays	363
8.6. Attachments to Standard Electromagnetic Relays	378
8.7. Microprocessor Based Time-Delay Relays	380
8.8. Accelerated (Forced) Relays	382
8.8. Accelerated (Forced) Relays	362
9 Thermal Relays	386
9.1. Relays Based on a Bimetallic Thermal Element	389
9.2. Protective Thermal Relays	393
9.3. Automatic Circuit Breakers with Thermal Elements	399
9.4. Dilatometer Relays	406
9.5. Manometric Thermal Relays	408
9.6. Mercury Thermal Relays	409
9.7. Thermal Relays with Reed Switches	411
	412
9.8. Semiconductor Thermal Elements and Thermal Relays	412
10 Current and Voltage Protection Relays	421
10.1. What are "Protective Relays"	421
10.2. Current and Voltage Transformers	423
10.3. Instantaneous Current and Voltage Relays	450
10.3.1. Protective Relays of the Electromagnetic Type	450
10.3.2. Electronic Current and Voltage Relays	468
10.3.3. Reed Switch Current Relays	475
10.4. Current Relays with an Independent "Time-Delays"	483
10.4.1. Relays with Integrated Clockwork	483
10.4.2. Current Relays with Electronic Time-Delay Components	492
10.4.2. Current Relays with Electronic Time-Delay Components 10.4.3. Electronic Current Relays with Independent Time-Delay	492
10.5. Current Relays with Dependent Time-Delay	495
	499 500
10.5.1. Relays with Liquid Time-Delay Elements	500 522
10.5.2. Induction Relays: Design and Characteristics	
10.5.3. Electronic Current Relays with Dependent Characteristics	501
10.6. Harmonic and Voltage Restraint Relays	527

		536
11	Power and Power-Directional Relays	
11.1.	Induction-Type Relays	536
	Characteristics of Power Direction Relays	541
	Electro-Dynamic-Type Relays	545
	Electronic Analogues of Power Direction Relays	547
12	Differential Relays	555
	Principles of Differential Protection	555
12.2.	High-Impedance Differential Relays	559
12.3.	Biased Differential Relays	567
12.4.	Electromagnetic Percentage Differential Relays	570
	Induction-Type Differential Relays	575
	Harmonic Restraint Differential Relays	580
	Pilot-Wire Differential Relays	586
13	Distance Relays	597
13.1.	Principles and Basic Characteristics of Distance Protection	597
13.2.	System Swing	605
13.3.	Principles of Distance Relays Construction	609
13.4.	Why do Distance Relays Need "Memory"?	619
	Distance Relays with Higher Performance	623
	Electronic Analogues of Impedance Relays	629
14	Frequency Relays	640
14.1.	Why is it Necessary to Control Frequency in Electric Networks?	640
14.2	Charles Steinmetz - Inventor of the Frequency Relay	642
14.2.	Induction Frequency Relays	643
	Resonance Relays	650
	Electronic Frequency Relays	652
14.3.	Electronic Frequency Relays	032
15	Microprocessor-Based Relays: Prospects and Challenges	662
15.1.	Is It a Relay at All?	662
15.2.	Advantages of Microprocessor-Based "Relays"	667
	Disadvantages of Microprocessor-Based "Relays"	675
15.4.	Summing Up	689
16	Special Types of Relays	691
	Polarized Relays	691
	Latching Relays	699
	Sequence Relays	716
	Rotary Relays	721
	Moving-Coil Relays	724
	Amplifier-Driven Relays	729
16.7.	Magneto-Hydro-Dynamic Relays	735

16.8. Annunciator Target Relays	738
16.9. Flashing-Light Relays	743
16.10. Buchholz Relays	751
16.11. Safety Relays	758
16.12. Ground Fault Relays	767
16.13. Supervision Relays	779
16.14. Hydraulic-Magnetic Circuit Breakers	791
Basic Relay Terms and Definitions-Glossary	
References	824

About the Author

Vladimir Gurevich (1956) is an Electrical Engineer at Israel Electric Corp., Haifa, Israel. He is the author of more than 140 professional papers, 3 books and hold of nearly 120 patents in the field of electrical engineering and power electronics. Dr. Gurevich received the M.S.E.E. degree (1978) at the Institute of Mechanization and Electrification, Kharkov, Ukraine and the Ph.D. degree (1986) at Kharkov Polytechnic Institute, Ukraine.

Book Ordering:

USA, Canada, Central & South America

1. E-mail: orders@crcpress.com

2. Fax Orders:

United States, Puerto Rico, and Canada: 1(800)-374-3401 Central & South America: (561) 989-8732 Orders outside North America or the Continental US: (561)994-0555

3. Write to Publisher: CRC Press LLC Attn: Order Entry 6000 Broken Sound Parkway, NW, (Suite 300) Boca Raton, FL 33487, USA

East and South-East Asia

- 1. E-mail: sales@tandf.com.sq
- 2. Fax Orders: 65 6742 9356
- 3. Write to Publisher:

Taylor & Francis Asia Pacific 240 MacPherson Road #08-01 Pines Industrial Building

Singapore 348574

United Kingdom

- 1. E-mail: <u>uk.tandf@thomsonpublishingservices.co.uk</u>
- 2. Fax Orders: 44-1264-343005
- 3. Write to Publisher:

Taylor & Francis Customer Service, TPS Cheriton House, North Way Andover, Hants SP10 5BE, UK

Rest of the World

- 1. E-mail: international.tandf@thomsonpublishingservices.co.uk
- 2. Fax Orders: 44-1264-343005
- 3. Write to Publisher:

Taylor & Francis Customer Service, TPS Cheriton House, North Way Andover, Hants SP10 5BE, UK